CQD Revista Eletrônica Paulista de Matemática (Nov 2022)
Comparação entre métodos numéricos: Runge-Kutta de quarta ordem e previsor-corretor
Abstract
As equações diferenciais ordinárias são de grande importância em diversas áreas, pois determinam o comportamento futuro de vários problemas, com base nas condições presentes. Os problemas podem ser modelados matematicamente e, através dessa modelagem matemática, é possível a representação dos conceitos e processos envolvidos nesses tipos de problemas, o que leva ao entendimento do fenômeno físico modelado. Neste contexto, este trabalho trata-se da comparação entre dois métodos numéricos, o método de Runge-Kutta e o método previsor-corretor, utilizados para resoluções de equações diferenciais ordinárias. A implementação do problema é realizada através do software Matlab e teve como objetivo a determinação da solução do problema. A verificação dos métodos foi realizada através de simulações numéricas do problema com diferentes condições auxiliares, comparando com a solução analítica existente na literatura.