A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins
Berta Torres-Cobos,
Mònica Rosell,
Albert Soler,
Mercè Rovira,
Agustí Romero,
Francesc Guardiola,
Stefania Vichi,
Alba Tres
Affiliations
Berta Torres-Cobos
Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
Mònica Rosell
Grup MAiMA, Mineralogia Aplicada, Geoquímica i Hidrogeologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Martí i Franqués s/n, 08028 Barcelona, Spain
Albert Soler
Grup MAiMA, Mineralogia Aplicada, Geoquímica i Hidrogeologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Martí i Franqués s/n, 08028 Barcelona, Spain
Mercè Rovira
Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus–El Morell Km 3.8, 43120 Constantí, Spain
Agustí Romero
Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus–El Morell Km 3.8, 43120 Constantí, Spain
Francesc Guardiola
Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
Stefania Vichi
Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
Alba Tres
Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
High-value products, such as hazelnuts, are particularly vulnerable to fraud due to their price dependence on geographical origin. Guaranteeing hazelnuts’ authenticity is essential for consumer trust and safety. Stable isotope analysis has become a reference method for origin authentication as it is reliable, robust, and easily transferable across laboratories. However, multiple isotopic markers coupled with chemometric techniques are often needed to authenticate food provenance accurately. In this study, we focused on assessing the potential of bulk δ18O, along with δ2H and δ13C of the main fatty acids, as hazelnut-origin authenticity markers. PLS-DA classification models were developed to differentiate samples (n = 207) according to their region of origin. This multi-isotopic approach provided promising external validation results, achieving a 94% global correct classification rate in discriminating hazelnuts from regions with distinct geographical and environmental conditions. This study lays the groundwork for further model development and evaluation across additional production areas and harvest years.