Vaccines (Jan 2024)
Mathematical Optimization Strategy for Effectiveness Profile Estimation in Two-Dose Vaccines and Its Use in Designing Improved Vaccination Strategies Focused on Pandemic Containment
Abstract
Since late 2019, most efforts to control the COVID-19 pandemic have focused on developing vaccines. By mid-2020, some vaccines fulfilled international regulations for their application. However, these vaccines have shown a decline in effectiveness several weeks after the last dose, highlighting the need to optimize vaccine administration due to supply chain limitations. While methods exist to prioritize population groups for vaccination, there is a lack of research on how to optimally define the time between doses when two-dose vaccines are administrated to such groups. Under such conditions, modeling the real effect of each vaccine on the population is critical. Even though several efforts have been made to characterize vaccine effectiveness profiles, none of these initiatives enable characterization of the individual effect of each dose. Thus, this paper presents a novel methodology for estimating the vaccine effectiveness profile. It addresses the vaccine characterization problem by considering a deconvolution of relevant data profiles, treating them as an optimization process. The results of this approach enabled the independent estimation of the effectiveness profiles for the first and second vaccine doses and their use to find sweet spots for designing efficient vaccination strategies. Our methodology can enable a more effective and efficient contemporary response against the COVID-19 pandemic, as well as for any other disease in the future.
Keywords