Journal of Fungi (Sep 2023)

Neuroprotective Effects of <i>Sparassis crispa</i> Ethanol Extract through the AKT/NRF2 and ERK/CREB Pathway in Mouse Hippocampal Cells

  • Malk Eun Pak,
  • Wei Li

DOI
https://doi.org/10.3390/jof9090910
Journal volume & issue
Vol. 9, no. 9
p. 910

Abstract

Read online

Sparassis crispa, known as the “Cauliflower mushroom”, is an edible medicinal fungus found in Asia, Europe, and North America. Its fruiting bodies contain active biological and pharmacological ingredients with antitumor and anti-inflammatory properties. In this study, we investigated the neuroprotective effect of various Sparassis crispa extract against glutamate-induced toxicity and oxidative stress in hippocampal HT22 cells. Cell viability and reactive oxygen species (ROS) analyses served to evaluate the neuroprotective effects of Sparassis crispa ethanol extract (SCE) and their fractions partitioned with ethyl acetate (EtOAc; SCE-E) and water (SCE-W) in HT22 cells. SCE and SCE-E treatment reduced glutamate-induced cell death and ROS generation. SCE-E reduced apoptosis and ROS levels by regulating anti-apoptotic proteins. Under glutamate treatment, SCE-E activated nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and regulated extracellular signal-regulated kinase (ERK) and AKT signals at late stages. SCE-E increased the protein expression of cAMP response element binding (CREB), brain-derived neurotrophic factor (BDNF), and Kelch-like ECH-associated protein 1 (Keap1), and decreased the Nrf2 protein expression. Moreover, co-treatment of SCE-E and wortmannin did not activate Nrf2 expression. Thus, the neuroprotective effect of SCE-E is likely due to Nrf2 and CREB activation through AKT and ERK phosphorylation, which effectively suppress glutamate-induced oxidative stress in HT22 cells. Accordingly, a daily supplement of SCE-E could become a potential treatment for oxidative-stress-related neurological diseases.

Keywords