Nanomaterials (Apr 2024)

Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium–Oxygen Batteries

  • Yanna Liu,
  • Wen Meng,
  • Yuying Gao,
  • Menglong Zhao,
  • Ming Li,
  • Liang Xiao

DOI
https://doi.org/10.3390/nano14090754
Journal volume & issue
Vol. 14, no. 9
p. 754

Abstract

Read online

The porous architectures of oxygen cathodes are highly desired for high-capacity lithium–oxygen batteries (LOBs) to support cathodic catalysts and provide accommodation for discharge products. However, controllable porosity is still a challenge for laminated cathodes with cathode materials and binders, since polymer binders usually shield the active sites of catalysts and block the pores of cathodes. In addition, polymer binders such as poly(vinylidene fluoride) (PVDF) are not stable under the nucleophilic attack of intermediate product superoxide radicals in the oxygen electrochemical environment. The parasitic reactions and blocking effect of binders deteriorate and then quickly shut down the operation of LOBs. Herein, the present work proposes a binder-free three-dimensional (3D) porous graphene (PG) cathode for LOBs, which is prepared by the self-assembly and the chemical reduction of GO with triblock copolymer soft templates (Pluronic F127). The interconnected mesoporous architecture of resultant 3D PG cathodes achieved an ultrahigh capacity of 10,300 mAh g−1 for LOBs. Further, the cathodic catalysts ruthenium (Ru) and manganese dioxide (MnO2) were, respectively, loaded onto the inner surface of PG cathodes to lower the polarization and enhance the cycling performance of LOBs. This work provides an effective way to fabricate free-standing 3D porous oxygen cathodes for high-performance LOBs.

Keywords