Remote Sensing (Dec 2024)
Arctic Sea Ice Surface Temperature Retrieval from FengYun-3A MERSI-I Data
Abstract
Arctic sea-ice surface temperature (IST) is an important environmental and climatic parameter. Currently, wide-swath sea-ice surface temperature products have a spatial resolution of approximately 1000 m. The Medium Resolution Spectral Imager (MERSI-I) offers a thermal infrared channel with a wide-swath width of 2900 km and a high spatial resolution of 250 m. In this study, we developed an applicable single-channel algorithm to retrieve ISTs from MERSI-I data. The algorithm accounts for the following challenges: (1) the wide range of incidence angle; (2) the unstable snow-covered ice surface; (3) the variation in atmospheric water vapor content; and (4) the unique spectral response function of MERSI-I. We reduced the impact of using a constant emissivity on the IST retrieval accuracy by simulating the directional emissivity. Different ice surface types were used in the simulation, and we recommend the sun crust type as the most suitable for IST retrieval. We estimated the real-time water vapor content using a band ratio method from the MERSI-I near-infrared data. The results show that the retrieved IST was lower than the buoy measurements, with a mean bias and root-mean-square error (RMSE) of −1.928 K and 2.616 K. The retrieved IST is higher than the IceBridge measurements, with a mean bias and RMSE of 1.056 K and 1.760 K. Compared with the original algorithm, the developed algorithm has higher accuracy and reliability. The sensitivity analysis shows that the atmospheric water vapor content with an error of 20% may lead to an IST retrieval error of less than 1.01 K.
Keywords