AIMS Mathematics (Feb 2024)

Fixed point and endpoint theorems of multivalued mappings in convex b-metric spaces with an application

  • Dong Ji,
  • Yao Yu,
  • Chaobo Li

DOI
https://doi.org/10.3934/math.2024368
Journal volume & issue
Vol. 9, no. 3
pp. 7589 – 7609

Abstract

Read online

In this paper, we investigated several new fixed points theorems for multivalued mappings in the framework $ b $-metric spaces. We first generalized $ S $-iterative schemes for multivalued mappings to above spaces by means of a convex structure and then we developed the existence of fixed points and approximate endpoints of the multivalued contraction mappings using iteration techniques. Furthermore, we introduced the modified $ S $-iteration process for approximating a common endpoint of a multivalued $ \alpha_{s} $-nonexpansive mapping and a multivalued mapping satisfying conditon $ (E^{'}) $. We also showed that this new iteration process converges faster than the $ S $-iteration process in the sense of Berinde. Some convergence results for this iterative procedure to a common endpoint under some certain additional hypotheses were proved. As an application, we applied the $ S $-iteration process in finding the solution to a class of nonlinear quadratic integral equations.

Keywords