AIMS Mathematics (Apr 2023)

Reduced-order modeling using the frequency-domain method for parabolic partial differential equations

  • Jeong-Kweon Seo,
  • Byeong-Chun Shin

DOI
https://doi.org/10.3934/math.2023779
Journal volume & issue
Vol. 8, no. 7
pp. 15255 – 15268

Abstract

Read online

This paper suggests reduced-order modeling using the Galerkin proper orthogonal decomposition (POD) to find approximate solutions for parabolic partial differential equations. We first transform a parabolic partial differential equation to the frequency-dependent elliptic equations using the Fourier integral transform in time. Such a frequency-domain method enables efficiently implementing a parallel computation to approximate the solutions because the frequency-variable elliptic equations have independent frequencies. Then, we introduce reduced-order modeling to determine approximate solutions of the frequency-variable elliptic equations quickly. A set of snapshots consists of the finite element solutions of the frequency-variable elliptic equations with some selected frequencies. The solutions are approximated using the general basis of the high-dimensional finite element space in a Hilbert space. reduced-order modeling employs the Galerkin POD for the snapshot subspace spanned by a set of snapshots. An orthonormal basis for the snapshot space can be easily computed using the spectral decomposition of the correlation matrix of the snapshots. Additionally, using an appropriate low-order basis of the snapshot space allows approximating the solutions of the frequency-variable elliptic equations quickly, where the approximate solutions are used for the inverse Fourier transforms to determine the approximated solutions in the time variable. Several numerical tests based on the finite element method are presented to asses the efficient performances of the suggested approaches.

Keywords