Sensors (Aug 2021)

Hybrid Pipeline Hardware Architecture Based on Error Detection and Correction for AES

  • Ignacio Algredo-Badillo,
  • Kelsey A. Ramírez-Gutiérrez,
  • Luis Alberto Morales-Rosales,
  • Daniel Pacheco Bautista,
  • Claudia Feregrino-Uribe

DOI
https://doi.org/10.3390/s21165655
Journal volume & issue
Vol. 21, no. 16
p. 5655

Abstract

Read online

Currently, cryptographic algorithms are widely applied to communications systems to guarantee data security. For instance, in an emerging automotive environment where connectivity is a core part of autonomous and connected cars, it is essential to guarantee secure communications both inside and outside the vehicle. The AES algorithm has been widely applied to protect communications in onboard networks and outside the vehicle. Hardware implementations use techniques such as iterative, parallel, unrolled, and pipeline architectures. Nevertheless, the use of AES does not guarantee secure communication, because previous works have proved that implementations of secret key cryptosystems, such as AES, in hardware are sensitive to differential fault analysis. Moreover, it has been demonstrated that even a single fault during encryption or decryption could cause a large number of errors in encrypted or decrypted data. Although techniques such as iterative and parallel architectures have been explored for fault detection to protect AES encryption and decryption, it is necessary to explore other techniques such as pipelining. Furthermore, balancing a high throughput, reducing low power consumption, and using fewer hardware resources in the pipeline design are great challenges, and they are more difficult when considering fault detection and correction. In this research, we propose a novel hybrid pipeline hardware architecture focusing on error and fault detection for the AES cryptographic algorithm. The architecture is hybrid because it combines hardware and time redundancy through a pipeline structure, analyzing and balancing the critical path and distributing the processing elements within each stage. The main contribution is to present a pipeline structure for ciphering five times on the same data blocks, implementing a voting module to verify when an error occurs or when output has correct cipher data, optimizing the process, and using a decision tree to reduce the complexity of all combinations required for evaluating. The architecture is analyzed and implemented on several FPGA technologies, and it reports a throughput of 0.479 Gbps and an efficiency of 0.336 Mbps/LUT when a Virtex-7 is used.

Keywords