Sensors (Dec 2022)

Predicting Site Energy Usage Intensity Using Machine Learning Models

  • Soualihou Ngnamsie Njimbouom,
  • Kwonwoo Lee,
  • Hyun Lee,
  • Jeongdong Kim

DOI
https://doi.org/10.3390/s23010082
Journal volume & issue
Vol. 23, no. 1
p. 82

Abstract

Read online

Climate change is a shift in nature yet a devastating phenomenon, mainly caused by human activities, sometimes with the intent to generate usable energy required in humankind’s daily life. Addressing this alarming issue requires an urge for energy consumption evaluation. Predicting energy consumption is essential for determining what factors affect a site’s energy usage and in turn, making actionable suggestions to reduce wasteful energy consumption. Recently, a rising number of researchers have applied machine learning in various fields, such as wind turbine performance prediction, energy consumption prediction, thermal behavior analysis, and more. In this research study, using data publicly made available by the Women in Data Science (WiDS) Datathon 2022 (contains data on building characteristics and information collected by sensors), after appropriate data preparation, we experimented four main machine learning methods (random forest (RF), gradient boost decision tree (GBDT), support vector regressor (SVR), and decision tree for regression (DT)). The most performant model was selected using evaluation metrics: root mean square error (RMSE) and mean absolute error (MAE). The reported results proved the robustness of the proposed concept in capturing the insight and hidden patterns in the dataset, and effectively predicting the energy usage of buildings.

Keywords