Advanced Electronic Materials (Sep 2024)

A Study on h‐BN Resistive Switching Temporal Response

  • Mirembe Musisi‐Nkambwe,
  • Sahra Afshari,
  • Jing Xie,
  • Hailey Warner,
  • Ivan Sanchez Esqueda

DOI
https://doi.org/10.1002/aelm.202400022
Journal volume & issue
Vol. 10, no. 9
pp. n/a – n/a

Abstract

Read online

Abstract Previous work that studied hexagonal boron nitride (h‐BN) memristor DC resistive‐switching characteristics is extended to include an experimental understanding of their dynamic behavior upon programming or synaptic weight update. The focus is on the temporal resistive switching response to driving stimulus (programming voltage pulses) effecting conductance updates during training in neural network crossbar implementations. Test arrays are fabricated at the wafer level, enabled by the transfer of CVD‐grown few‐layer (8 layer) or multi‐layer (18 layer) h‐BN films. A comprehensive study of their temporal response under various conditions–voltage pulse amplitude, edge rate (pulse rise/fall times), and temperature–provides new insights into the resistive switching process toward optimized devices and improvements in their implementation of artificial neural networks. The h‐BN memristors can achieve multi‐state operation through ultrafast pulsed switching (< 25 ns) with high energy efficiency (≈10 pJ pulse−1).

Keywords