PLoS ONE (Jan 2020)
Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy.
Abstract
Atomic Force Microscopy was utilized to study the morphology of Gag, ΨRNA, and their binding complexes with lipids in a solution environment with 0.1Å vertical and 1nm lateral resolution. TARpolyA RNA was used as a RNA control. The lipid used was phospha-tidylinositol-(4,5)-bisphosphate (PI(4,5)P2). The morphology of specific complexes Gag-ΨRNA, Gag-TARpolyA RNA, Gag-PI(4,5)P2 and PI(4,5)P2-ΨRNA-Gag were studied. They were imaged on either positively or negatively charged mica substrates depending on the net charges carried. Gag and its complexes consist of monomers, dimers and tetramers, which was confirmed by gel electrophoresis. The addition of specific ΨRNA to Gag is found to increase Gag multimerization. Non-specific TARpolyA RNA was found not to lead to an increase in Gag multimerization. The addition PI(4,5)P2 to Gag increases Gag multimerization, but to a lesser extent than ΨRNA. When both ΨRNA and PI(4,5)P2 are present Gag undergoes comformational changes and an even higher degree of multimerization.