PeerJ (Jul 2018)

Nickel and cobalt resistance properties of Sinorhizobium meliloti isolated from Medicago lupulina growing in gold mine tailing

  • Zhefei Li,
  • Xiuyong Song,
  • Juanjuan Wang,
  • Xiaoli Bai,
  • Engting Gao,
  • Gehong Wei

DOI
https://doi.org/10.7717/peerj.5202
Journal volume & issue
Vol. 6
p. e5202

Abstract

Read online Read online

Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed multiple heavy metal resistance and growth promotion of M. lupulina. In our previous work, the expression level of dmeR and dmeF genes were induced by Cu2+ through comparative transcriptome approach. Based on protein analysis, the dmeF encoded for a protein which showed a 37% similarity to the cation transporter DmeF of Cupriavidus metallidurans, whereas dmeR encoded transcriptional regulator which was highly homologous with DmeR belonging to RcnR/CsoR family metal-responsive transcriptional regulator. In addition to copper, quantitative real-time PCR analysis showed that dmeR and dmeF were also induced by nickel and cobalt. To investigate the functions of dmeR and dmeF in S. meliloti CCNWSX0020, the dmeR and dmeF deletion mutants were constructed. The dmeF mutant was more sensitive to Co2 + and Ni2 + than the wild type strain. Pot experiments were carried out to determine whether the growth of M. lupulina was affected when the dmeF gene was knocked out in the presence of nickel or cobalt. Results indicated that the nodule number of the host plant inoculated with the dmeF deletion mutant was significantly less than the S. meliloti CCNWSX0020 wild-type in the presence of Co2 + or Ni2 +. However, when standardized by nodule fresh weight, the nitrogenase activities of nodules infected by the dmeF deletion mutant was similar to nitrogenase activity of the wild type nodule.

Keywords