Materials Research Express (Jan 2022)

Direct graphene synthesis on LiNbO3 substrate by C implantation on Cu covering layer

  • Yuhang Xu,
  • Fei Lu,
  • Yifan Liu,
  • Changdong Ma

DOI
https://doi.org/10.1088/2053-1591/ac9f03
Journal volume & issue
Vol. 9, no. 11
p. 115602

Abstract

Read online

We directly synthesized multi-layer graphene with an area of several hundred square microns on the lithium niobate (LN, LiNbO _3 ) substrate by Carbon (C) implantation into the copper (Cu)-covered LiNbO _3 . The energy of C ion implantation was optimized per SRIM simulation to ensure that the distribution of C covers the Cu/LiNbO _3 interface. The optimized energy was established at 55 keV, such that the formation of C peaks in the respective materials on each side of the Cu/LiNbO _3 interface. The diffusion of the accumulated C to the Cu/LiNbO _3 interface can form a more uniform C distribution at the interface, which is beneficial to the synthesis of graphene. Following the annealing process and removal of the Cu coating, a multi-layer graphene with an area of several hundred square microns on the surface of LiNbO _3 was identified and characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Raman spectroscopy, and Atomic Force Microscopy (AFM). This remarkable advancement encourages the industrialization of direct graphene synthesis on LiNbO _3 substrates via ion implantation.

Keywords