Remote Sensing (Apr 2023)

Automatic Detection of Daytime Sea Fog Based on Supervised Classification Techniques for FY-3D Satellite

  • Yu Wang,
  • Zhongfeng Qiu,
  • Dongzhi Zhao,
  • Md. Arfan Ali,
  • Chenyue Hu,
  • Yuanzhi Zhang,
  • Kuo Liao

DOI
https://doi.org/10.3390/rs15092283
Journal volume & issue
Vol. 15, no. 9
p. 2283

Abstract

Read online

Polar-orbiting satellites have been widely used for detecting sea fog because of their wide coverage and high spatial and spectral resolution. FengYun-3D (FY-3D) is a Chinese satellite that provides global sea fog observation. From January 2021 to October 2022, the backscatter and virtual file manager products from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) were used to label samples of different atmospheric conditions in FY-3D images, including clear sky, sea fog, low stratus, fog below low stratus, mid–high-level clouds, and fog below the mid–high-level clouds. A 13-dimensional feature matrix was constructed after extracting and analyzing the spectral and texture features of these samples. In order to detect daytime sea fog using a 13-dimensional feature matrix and CALIPSO sample labels, four supervised classification models were developed, including Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Neural Network. The accuracy of each model was evaluated and compared using a 10-fold cross-validation procedure. The study found that the SVM, KNN, and Neural Network performed equally well in identifying low stratus, with 85% to 86% probability of detection (POD). As well as identifying the basic components of sea fog, the SVM model demonstrated the highest POD (93.8%), while the KNN had the lowest POD (92.4%). The study concludes that the SVM, KNN, and Neural Network can effectively distinguish sea fog from low stratus. The models, however, were less effective at detecting sub-cloud fog, with only 11.6% POD for fog below low stratus, and 57.4% POD for fog below mid–high-level clouds. In light of this, future research should focus on improving sub-cloud fog detection by considering cloud layers.

Keywords