Düzce Üniversitesi Bilim ve Teknoloji Dergisi (Jan 2020)
Tekrarlı Ortalama Yardımıyla Renk İndirgeme ve Görüntü Erişimi
Abstract
Sayısal görüntülerden oluşan bir veri tabanından sorgulanan bir görüntünün aynısının veya benzerlerinin getirilmesi süreci görüntü erişimi olarak tanımlanır. Her ne kadar sayısal görüntü piksellerden oluşuyor olsa da sorgulama piksel düzeyinde değil, sayısal görüntüleri temsil eden vektörler düzeyinde yapılmaktadır. Görüntülerin vektörler ile temsil edilmesi özellik çıkarma süreci olarak adlandırılır ve içerik tabanlı görüntü erişiminin (İTGE) en önemli aşamasıdır. Özellik vektörünün temsil kabiliyetinin düşük olması sistemin performansının da düşük olması demektir. Gri ölçekli görüntülerin histogramları en tipik özellik vektörleridir. Diğer taraftan renkli görüntülerde üç ayrı kanal mevcut olduğundan, görüntüyü temsil edebilecek histogram üç boyutlu bir dizi oluşturur ki bu durum sistemin hesap maliyetini oldukça artıracaktır. Bu nedenle araştırmacılar renkli görüntülerdeki renk sayısını azaltma veya renk indirgeme yaklaşımını tercih etmişlerdir. Vektör kuantalama olarak adlandırılan renk indirgeme sürecinde ise her zaman aynı sonucu üretmek mümkün olmamıştır. Bunun nedeni ise bazı algoritmaların başlangıçta rastgele üretilen renk vektörleri ile çözüm aramalarıdır. Linde-Buzo-Gray (LBG), K-ortalamalar ve bulanık c-ortalamalar algoritmaları bu tür çözüm yaklaşımlarına tipik örneklerdir. Bu çalışmada tekrarlı ortalama tabanlı renk indirgeme yaklaşımı kullanılarak yeni bir görüntü erişim metodu önerilmiştir. Önerilen stratejide, öncelikle her bir renk kanalının histogramı üzerinden tekrarlı bir şekilde ortalamalar hesaplanmış ve çok seviyeli eşikler elde edilmiştir. Elde edilen eşikler kullanılarak RGB renk uzayı alt prizmalar şeklinde dilimlenmiştir. Oluşan alt prizmalar içinde kalan pikseller aynı sınıfa atanmış ve ilgili sınıftaki piksellerin ortalamaları kullanılarak renk indirgemesi yapılmıştır. Sınıf indisleri ve ilgili sınıflara tahsis edilen piksel sayıları yardımıyla tek boyutlu histogram elde edilmiştir. Son aşamada ise elde edilen sınıf tabanlı histogram özellik vektörü olarak atanmış ve içerik tabanlı görüntü erişimi gerçekleştirilmiştir. Önerilen algoritma ve LBG algoritması ile sonuçlar alınmış ve karşılaştırmalar yapılmıştır.
Keywords