PLoS Computational Biology (Feb 2017)

Mindboggling morphometry of human brains.

  • Arno Klein,
  • Satrajit S Ghosh,
  • Forrest S Bao,
  • Joachim Giard,
  • Yrjö Häme,
  • Eliezer Stavsky,
  • Noah Lee,
  • Brian Rossa,
  • Martin Reuter,
  • Elias Chaibub Neto,
  • Anisha Keshavan

DOI
https://doi.org/10.1371/journal.pcbi.1005350
Journal volume & issue
Vol. 13, no. 2
p. e1005350

Abstract

Read online

Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle's algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available.