Journal of the International Society of Sports Nutrition (Aug 2020)
Effect of D-ribose supplementation on delayed onset muscle soreness induced by plyometric exercise in college students
Abstract
Objective Previous investigations suggest that appropriate nutritional interventions may reduce delayed onset muscle soreness (DOMS). This study examined the effect of D-ribose supplementation on DOMS induced by plyometric exercise. Methods For the purpose of inducing DOMS, 21 untrained male college students performed a lower-limb plyometric exercise session that involved 7 sets of 20 consecutive frog hops with 90-s of rest between each set. Muscle soreness was measured with a visual analogue scale 1-h before, 24-h after, and 48-h after exercise. Subjects were then randomly placed into the D-ribose group (DRIB, n = 11) and the placebo group (PLAC, n = 10) to assure equivalent BMI and muscle soreness. After a 14-d washout/recovery period, subjects performed the same exercise session, with DRIB ingesting a 200 ml solution containing 15 g D-ribose 1-h before, 1-h, 12-h, 24-h, and 36-h after exercise, and PLAC ingesting a calorically equivalent placebo of the same volume and taste containing sorbitol and β-cyclodextrin. Muscle soreness and isokinetic muscle strength were measured, and venous blood was assessed for markers of muscle damage and oxidative stress 1-h before, 24-h and 48-h after exercise. Results In DRIB, muscle soreness after 24-h and 48-h in the second exercise session were significantly lower (p < 0.01) than was experienced in the first exercise session. In the second exercise, blood-related markers of muscle soreness, including creatine kinase, lactate dehydrogenase (LDH), myoglobin and malondialdehyde (MDA) in DRIB after 24-h were lower in DRIB after 24-h than in PLAC (MDA, p < 0.05; rest outcomes, p < 0.01). In addition, LDH and MDA in DRIB were significantly lower (p < 0.01) after 24-h in DRIB than in PLAC. No difference was found in isokinetic muscle strength and oxidative stress markers, including superoxide dismutase and total antioxidant capacity, between DRIB and PLAC after 24-h and 48-h. Conclusion D-ribose supplementation reduces muscle soreness, improves recovery of muscle damage, and inhibits the formation of lipid peroxides. Young adult males performing plyometric exercise are likely to realize a DOMS reduction through consumption of D-ribose in 15 g/doses both before (1-h) and after (1-h, 12-h, 24-h, 36-h) exercise. These results suggest that appropriately timed consumption of D-ribose may induce a similar alleviation of exercise-induced DOMS in the general public.
Keywords