Iranica Journal of Energy and Environment (Dec 2020)

Adsorption, Kinetic and Thermodynamic Study for Removal of Nickel Ions by Activated Carbon from Palm Kernel

  • M. Erhayem,
  • R. Gaith,
  • O. E. Otman,
  • M. U. Frage

DOI
https://doi.org/10.5829/ijee.2020.11.04.12
Journal volume & issue
Vol. 11, no. 4
pp. 339 – 350

Abstract

Read online

Palm kernel (PK) was activated by chemical activation (HNO3 at 230oC) to remove Ni(II) ions from aqueous solutions. Physicochemical properties of PK were reported. FT-IR analysis revealed changes in wave numbers and absorbance indicating Ni(II) adsorption onto activated carbon-PK surface. Energy dispersive X-ray fluorescence technique was used to determine the content of metals in activated carbon-PK and showed the metals found in activated carbon-PK were in recommended human usages. The maximum removal of Ni(II) ions was to be 49.7% at pH 4.6 and the equilibrium reached at 80 min. The removal efficiency of Ni(II) ions increased as the dosage of activated-PK increases and the optimum amount of activated carbon-PK dose was found to be 70 mg. The optimum pH was 4.6. The isotherm, kinetics and thermodynamics were studied. The Ni(II)- activated carbon-PK adsorption was found to follow the Freundlich isotherm based on correlation coefficient (R2) values and to be physical adsorption from the mean free energy found by Dubinin-Radushkevich, which confirmed by isothermal microcalorimetry data and the heat of sorption process using Temkin Isotherm model to be 1.58 kJ/mol. The adsorption kinetic data were described well by a second order, with the kinetic constant rates in the range of 1.82-83.5 g/g.min and was not controlled by intra-particle diffusion model. The thermodynamic studies showed that the Ni(II)-ACPK adsorption process is exothermic due to the negative values of ∆H (-30.9 J/mol) and is physical nature process due to the negative values of ∆S (-14.9 J/mol). The magnitude of Ea is 15.04 kJ/mol, which is proven the physical adsorption in nature.

Keywords