Open Computer Science (Feb 2016)

Popularity estimation of interesting locations from visitor’s trajectories using fuzzy inference system

  • Tiwari Shivendra,
  • Kaushik Saroj

DOI
https://doi.org/10.1515/comp-2016-0002
Journal volume & issue
Vol. 6, no. 1
pp. 8 – 24

Abstract

Read online

Identifying the interesting places through GPS trajectory mining has been well studied based on the visitor’s frequency. However, the places popularity estimation based on the trajectory analysis has not been explored yet. The limitation in the majority of the traditional popularity estimation and place user-rating based methods is that all the participants are given the same importance. In reality, it heavily depends on the visitor’s category, for example, international visitors make distinct impact on popularity. The proposed method maintains a registry to keep the information about the visited users, their stay time and the travel distance from their home location. Depending on the travel nature the visitors are labeled as native, regional and tourist for each place in question. It considers the fact that the higher stay in a place is an implicit measure of the greater likings. Theweighted frequency is eventually fuzzified and applied rule based fuzzy inference system (FIS) to compute popularity of the places in terms of the ratings ∈ [0, 5]. We have evaluated the proposed method using a large real road GPS trajectory of 182 users for identifying the ratings for the collected 26807 point of interests (POI) in Beijing (China).

Keywords