PLoS ONE (Jan 2022)

Artificial intelligence in medical education curriculum: An e-Delphi study for competencies.

  • S Ayhan Çalışkan,
  • Kadir Demir,
  • Ozan Karaca

DOI
https://doi.org/10.1371/journal.pone.0271872
Journal volume & issue
Vol. 17, no. 7
p. e0271872

Abstract

Read online

BackgroundArtificial intelligence (AI) has affected our day-to-day in a great extent. Healthcare industry is one of the mainstream fields among those and produced a noticeable change in treatment and education. Medical students must comprehend well why AI technologies mediate and frame their decisions on medical issues. Formalizing of instruction on AI concepts can facilitate learners to grasp AI outcomes in association with their sensory perceptions and thinking in the dynamic and ambiguous reality of daily medical practice. The purpose of this study is to provide consensus on the competencies required by medical graduates to be ready for artificial intelligence technologies and possible applications in medicine and reporting the results.Materials and methodsA three-round e-Delphi survey was conducted between February 2020 and November 2020. The Delphi panel accorporated experts from different backgrounds; (i) healthcare professionals/ academicians; (ii) computer and data science professionals/ academics; (iii) law and ethics professionals/ academics; and (iv) medical students. Round 1 in the Delphi survey began with exploratory open-ended questions. Responses received in the first round evaluated and refined to a 27-item questionnaire which then sent to the experts to be rated using a 7-point Likert type scale (1: Strongly Disagree-7: Strongly Agree). Similar to the second round, the participants repeated their assessments in the third round by using the second-round analysis. The agreement level and strength of the consensus was decided based on third phase results. Median scores was used to calculate the agreement level and the interquartile range (IQR) was used for determining the strength of the consensus.ResultsAmong 128 invitees, a total of 94 agreed to become members of the expert panel. Of them 75 (79.8%) completed the Round 1 questionnaire, 69/75 (92.0%) completed the Round 2 and 60/69 (87.0%) responded to the Round 3. There was a strong agreement on the 23 items and weak agreement on the 4 items.ConclusionsThis study has provided a consensus list of the competencies required by the medical graduates to be ready for AI implications that would bring new perspectives to medical education curricula. The unique feature of the current research is providing a guiding role in integrating AI into curriculum processes, syllabus content and training of medical students.