Annals of Intensive Care (Jun 2024)

Basing intubation of acutely hypoxemic patients on physiologic principles

  • Franco Laghi,
  • Hameeda Shaikh,
  • Nicola Caccani

DOI
https://doi.org/10.1186/s13613-024-01327-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The decision to intubate a patient with acute hypoxemic respiratory failure who is not in apparent respiratory distress is one of the most difficult clinical decisions faced by intensivists. A conservative approach exposes patients to the dangers of hypoxemia, while a liberal approach exposes them to the dangers of inserting an endotracheal tube and invasive mechanical ventilation. To assist intensivists in this decision, investigators have used various thresholds of peripheral or arterial oxygen saturation, partial pressure of oxygen, partial pressure of oxygen-to-fraction of inspired oxygen ratio, and arterial oxygen content. In this review we will discuss how each of these oxygenation indices provides inaccurate information about the volume of oxygen transported in the arterial blood (convective oxygen delivery) or the pressure gradient driving oxygen from the capillaries to the cells (diffusive oxygen delivery). The decision to intubate hypoxemic patients is further complicated by our nescience of the critical point below which global and cerebral oxygen supply become delivery-dependent in the individual patient. Accordingly, intubation requires a nuanced understanding of oxygenation indexes. In this review, we will also discuss our approach to intubation based on clinical observations and physiologic principles. Specifically, we consider intubation when hypoxemic patients, who are neither in apparent respiratory distress nor in shock, become cognitively impaired suggesting emergent cerebral hypoxia. When deciding to intubate, we also consider additional factors including estimates of cardiac function, peripheral perfusion, arterial oxygen content and its determinants. It is not possible, however, to pick an oxygenation breakpoint below which the benefits of mechanical ventilation decidedly outweigh its hazards. It is futile to imagine that decision making about instituting mechanical ventilation in an individual patient can be condensed into an algorithm with absolute numbers at each nodal point. In sum, an algorithm cannot replace the presence of a physician well skilled in the art of clinical evaluation who has a deep understanding of pathophysiologic principles.

Keywords