Fluids (Mar 2021)

Micropolar Blood Flow in a Magnetic Field

  • George C. Bourantas

DOI
https://doi.org/10.3390/fluids6030133
Journal volume & issue
Vol. 6, no. 3
p. 133

Abstract

Read online

In this paper we numerically solve a flow model for the micropolar biomagnetic flow (blood flow) in a magnetic field. In the proposed model we account for both electrical and magnetic properties of the biofluid and we investigate the role of microrotation on the flow regime. The flow domain is in a channel with an unsymmetrical single stenosis, and in a channel with irregular multi-stenoses. The mathematical flow model consists of the Navier–Stokes (N–S) equations expressed in their velocity–vorticity (u–ω) variables including the energy and microrotation transport equation. The governing equations are solved by using the strong form meshless point collocation method. We compute the spatial derivatives of the unknown field functions using the discretization correction particle strength exchange (DC PSE) method. We demonstrate the accuracy of the proposed scheme by comparing the numerical results obtained with those computed using the finite element method.

Keywords