Controlling the Amorphous and Crystalline State of Multinary Alloy Nanoparticles in An Ionic Liquid
Alba Garzón-Manjón,
Hajo Meyer,
Dario Grochla,
Tobias Löffler,
Wolfgang Schuhmann,
Alfred Ludwig,
Christina Scheu
Affiliations
Alba Garzón-Manjón
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Hajo Meyer
Werkstoffe der Mikrotechnik, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstr.150, D-44801 Bochum, Germany
Dario Grochla
Werkstoffe der Mikrotechnik, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstr.150, D-44801 Bochum, Germany
Tobias Löffler
Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
Wolfgang Schuhmann
Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
Alfred Ludwig
Werkstoffe der Mikrotechnik, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstr.150, D-44801 Bochum, Germany
Christina Scheu
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Controlling the amorphous or crystalline state of multinary Cr-Mn-Fe-Co-Ni alloy nanoparticles with sizes in the range between ~1.7 nm and ~4.8 nm is achieved using three processing routes. Direct current sputtering from an alloy target in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide leads to amorphous nanoparticles as observed by high-resolution transmission electron microscopy. Crystalline nanoparticles can be achieved in situ in a transmission electron microscope by exposure to an electron beam, ex situ by heating in vacuum, or directly during synthesis by using a high-power impulse magnetron sputtering process. Growth of the nanoparticles with respect to the amorphous particles was observed. Furthermore, the crystal structure can be manipulated by the processing conditions. For example, a body-centered cubic structure is formed during in situ electron beam crystallization while longer ex situ annealing induces a face-centered cubic structure.