Proceedings of Engineering and Technology Innovation (Jan 2020)

Stretchable, Patch-Type, Wireless, 6-axis Inertial Measurement Unit for Mobile Health Monitoring

  • Jae Keun Lee,
  • Kangil Kim,
  • Sangmin Lee

Journal volume & issue
Vol. 14

Abstract

Read online

Wearable devices which measure and transfer signals from the human body can provide useful biometric data for various biomedical applications. In this paper, we present an implementation of the advanced Inertial Measurement Unit (IMU) with wireless communication technology for mobile health monitoring. The device consists of rigid silicon-based components on a flexible/stretchable substrate for applications in epidermal electronic devices to collect precise data from the human body. Using the Bluetooth Low Energy (BLE) System-on-a-chip (SoC), the device can be miniaturized and portable, and the collected data can be processed with low power consumption. The dimensions of the implemented system are approximately 40 mm × 40 mm × 100 mm. Also, the device can be attached closely to human skin, which results in minimized signal distortion due to body movements or skin deformations. In order to achieve device flexibility and stretch ability, the interconnection wires are designed as serpentine-shaped structures on a stretchable substrate. The previously reported “cut-and-paste” method is utilized to fabricate the device that produces complex, twisty interconnections with thin metal sheets. The implemented patch-type, wireless, 6-axis IMU is expected to have potential in various applications, such as health monitoring, dependency care, and daily lifelogging.

Keywords