Ultrasonics Sonochemistry (May 2022)
Synergistic effect of preheating and different power output high-intensity ultrasound on the physicochemical, structural, and gelling properties of myofibrillar protein from chicken wooden breast
Abstract
The effects of preheating to 50 ℃ and the subsequent application of high-intensity ultrasound (HIU, 20 kHz) at 200, 400, 600, and 800 W on the physicochemical, structural, and gelling properties of wooden breast myofibrillar protein (WBMP) were studied. Results suggested that the WBMP structure expanded to the balanced state at 600 W, and rheological properties exhibit that 600 W HIU (P < 0.05) significantly improved the storage modulus (G′) of WBMP. Notably, the WBMP gel (600 W) had the best hardness (65.428 ± 0.33 g), springiness (0.582 ± 0.01), and water-holding capacity (86.11 ± 0.83%). Raman spectra and low-field NMR indicated that 600 W HIU increased the β-fold content (37.94 ± 0.04%) and enlarged the immobilized-water proportion (93.87 ± 0.46%). Scanning electron micrographs confirmed that the gel was uniform and dense at 600 W. Therefore, preheating to 50 ℃ followed by HIU (600 W) helped form a superior WBMP gel.