Environmental Health (Sep 2024)
Does residential address-based exposure assessment for outdoor air pollution lead to bias in epidemiological studies?
Abstract
Abstract Background Epidemiological studies of long-term exposure to outdoor air pollution have consistently documented associations with morbidity and mortality. Air pollution exposure in these epidemiological studies is generally assessed at the residential address, because individual time-activity patterns are seldom known in large epidemiological studies. Ignoring time-activity patterns may result in bias in epidemiological studies. The aims of this paper are to assess the agreement between exposure assessed at the residential address and exposures estimated with time-activity integrated and the potential bias in epidemiological studies when exposure is estimated at the residential address. Main body We reviewed exposure studies that have compared residential and time-activity integrated exposures, with a focus on the correlation. We further discuss epidemiological studies that have compared health effect estimates between the residential and time-activity integrated exposure and studies that have indirectly estimated the potential bias in health effect estimates in epidemiological studies related to ignoring time-activity patterns. A large number of studies compared residential and time-activity integrated exposure, especially in Europe and North America, mostly focusing on differences in level. Eleven of these studies reported correlations, showing that the correlation between residential address-based and time-activity integrated long-term air pollution exposure was generally high to very high (R > 0.8). For individual subjects large differences were found between residential and time-activity integrated exposures. Consistent with the high correlation, five of six identified epidemiological studies found nearly identical health effects using residential and time-activity integrated exposure. Six additional studies in Europe and North America showed only small to moderate potential bias (9 to 30% potential underestimation) in estimated exposure response functions using residence-based exposures. Differences of average exposure level were generally small and in both directions. Exposure contrasts were smaller for time-activity integrated exposures in nearly all studies. The difference in exposure was not equally distributed across the population including between different socio-economic groups. Conclusions Overall, the bias in epidemiological studies related to assessing long-term exposure at the residential address only is likely small in populations comparable to those evaluated in the comparison studies. Further improvements in exposure assessment especially for large populations remain useful.
Keywords