PLoS ONE (Jan 2020)

Visual outcomes of proton beam therapy for choroidal melanoma at a single institute in the Republic of Korea.

  • Su-Kyung Jung,
  • Young-Hoon Park,
  • Dong-Ho Shin,
  • Hak-Soo Kim,
  • Jong-Hwi Jung,
  • Tae-Hyun Kim,
  • Sung Ho Moon

DOI
https://doi.org/10.1371/journal.pone.0242966
Journal volume & issue
Vol. 15, no. 12
p. e0242966

Abstract

Read online

We evaluate the ocular effects of proton beam therapy (PBT) in a single institution, in Korea, and identify factors contributing to decreasing visual acuity (VA) after PBT. A total of 40 patients who received PBT for choroidal melanoma (2009‒2016) were reviewed. Dose fractionation was 60‒70 cobalt gray equivalents (CGEs) over five fractions. Complete ophthalmic examinations including funduscopy and ultrasonography were performed at baseline and at 3, 6, and 12 months after PBT, then annually thereafter. Only patients with at least 12 months follow-up were included. During the follow-up, consecutive best-corrected visual acuity (BCVA) changes were determined, and univariate and multivariate logistic regression analyses were performed to identify predictors for VA loss. The median follow-up duration was 32 months (range: 12‒82 months). The final BCVA of nine patients was > 20/40. The main cause of vision loss was intraocular bleeding, such as neovascular glaucoma or retinal hemorrhage. Vision loss was correlated with the tumor size, tumor distance to the optic disc or fovea, maculae receiving 30 CGEs, optic discs receiving 30 CGEs, and retinas receiving 30 CGEs. Approximately one-third of PBT-treated choroidal melanoma patients with good pretreatment BCVA maintained their VA. The patients who finally lost vision (VA < count fingers) usually experienced rapid declines in VA from 6‒12 months after PBT. Tumor size, tumor distance to the optic disc or fovea, volume of the macula, and optic discs or retinas receiving 30 CGEs affected the final VA.