Agronomy (Jun 2021)

Environmental Assessment of Furrow vs. Drip Irrigated Pear (<i>Pyrus bretschneideri</i> Rehd.) Production Systems in Loess Plateau (China)

  • Jie Wang,
  • Mingxin Zhao,
  • Yu Wan,
  • Yu Zeng,
  • Yong Wei,
  • Yueqiang Zhang,
  • Xinping Chen,
  • Xiaojun Shi

DOI
https://doi.org/10.3390/agronomy11061201
Journal volume & issue
Vol. 11, no. 6
p. 1201

Abstract

Read online

Irrigation systems increase fruit yield of water shortage orchards in semiarid and arid lands, but their environmental impacts remain unclear. This study carries out a comparative cradle-to-gate life cycle assessment (LCA) of the furrow and drip irrigated pear production systems in the Loess Plateau of China based on 2009–2018 inventory data from integrated experimental stations. The water depletion (WD), water footprint (WF), global warming (GWP), acidification (AP), and eutrophication (EP) potentials of the furrow and drip irrigated pear production systems were calculated and compared, including the orchard installation phase (phase I), primary growing phase (phase II), low production phase (phase III), and full production phase (phase IV). Results indicated that the cumulative WD, GWP, AP, and EP of the drip irrigated system were 148.3 m3, 130.1 kg CO2-eq, 0.9 kg SO2-eq, and 0.6 kg PO4-eq per ton of pear fruit harvest, respectively, which were 37.3–73.5% lower than those of the furrow irrigated system. The GWP, AP, EP, and WD of phase I to III contributed 39.3–46.1% in the drip irrigated system vs. 27.8–38.6% in the furrow irrigated system of the total amount, which should not be neglected in perennial orchard systems. The annual WFs were 0.9, 0.2, and 0.2 m3 kg−1 year−1 in phases II, III, and IV of the drip system, respectively, which were 50–71.4% lower than that of the furrow system. Green WF of furrow and drip irrigated systems were approximately the same, but the blue WF and grey WF of drip irrigation systems were 35.7–62.1% and 66.0–73.2% lower than those of the furrow irrigated system. The drip irrigated pear production system significantly mitigated environmental impacts and WFs, mainly due to reduced fertilizer application, water consumption, electricity, and diesel demand. Irrigation that changed from a furrow to a drip system was responsible for most environmental reductions, but 8% decreases of yields in phase IV. The outcomes from assessing the furrow and drip irrigated pear production systems could provide useful information for decision-making by the pear orchardists in the Loess Plateau.

Keywords