Vestnik MGTU (Sep 2016)

An experimental investigation of thermo-capillary convection in solution of lithium bromide at non-isothermal absorption

  • Bufetov N. S. ,
  • Dekhtyar R. A. ,
  • Ovchinikov V. V.

DOI
https://doi.org/10.21443/1560-9278-2016-3-673-679
Journal volume & issue
Vol. 19, no. 3
pp. 673 – 679

Abstract

Read online

The aim of this work is to obtain new experimental data on the development of thermo-capillary convection in a solution of lithium bromide with non-isothermal absorption of water vapor in a confined vessel. In experiments the contactless method of measuring the temperature of the interface based on using thermal imaging equipment, and the visualization method of the flow arising in the absorbent layer by introducing markers into solution have been used. The immobile layer of lithium bromide solution with an initial concentration of 58 % and a layer thickness of 20 mm in a confined vessel of 70 mm in diameter has been chosen as an object of investigation. The water vapor has been used as the absorbed gas, whose pressure was kept constant during the absorption (approximately 2 000 Pa). The absorption process has started after the steam supply to the absorber where the initial pressure has corresponded to saturated water vapor pressure at the temperature of the solution (250–300 Pa). The speed and duration of convective motion in the layer absorption on the basis of imaging arising due to thermo-capillary convection have been measured. The thermograms of the interface for various operating parameters have been obtained with the development of thermo-concentration convection. The characteristic time of the thermo-capillary convection development has been determined. Based on the experimental data analysis the empirical expressions for duration of the convective motion depending on the vapor pressure in the absorber and the thickness of the absorbent layer have been proposed. It has been shown that lowering the initial temperature of the solution leads to enhancement of thermo-concentration convection. The results are useful for the design and optimization of elements of refrigeration engineering of the absorption type.