Applied Sciences (Oct 2023)
Examining the Efficiency of Electric-Assisted Mountain Biking across Different Types of Terrain
Abstract
Mountain bikes with electric assistance (e-bikes) have gained popularity recently by allowing riders to increase their pedaling power through an electric motor. This innovation has raised questions about how e-bikes compare to traditional mountain bikes regarding physical effort, speed, and physiological demands. By examining these factors, the study aims to compare and characterize differences in performance-related parameters when using an electric-assisted mountain bike compared to a conventional mountain bike on different types of terrain (uphill, downhill, flat section, technically demanding terrain) concerning power output, velocity, cardiorespiratory parameters, and energy expenditure. Six experienced mountain bikers (mean age: 44.6 ± 6.4 years, mean body height: 173.3 ± 5.6 cm, mean body weight: 70.6 ± 4.9 kg) cycled 4.5 km on varying off-road terrain at their own race pace, once with and once without electrical assistance, in randomized order. The results of the study indicate significantly faster (24.3 ± 1.85 to 17.2 ± 1.22 km/h (p p < 0.001)). The results indicate significant differences especially when riding uphill. The performance advantage of an electrically assisted mountain bike diminishes compared to a conventional mountain bike on downhill, flat, or technically challenging terrain. The highlighted advantages of electric-assisted mountain bikes could represent a novel strategy for cycling in different terrains to optimize efficiency.
Keywords