Multi-Responsive Sensor Based on Porous Hydrogen-Bonded Organic Frameworks for Selective Sensing of Ions and Dopamine Molecules
Faqiang Chen,
Hui Xu,
Youlie Cai,
Wei Zhang,
Penglei Shen,
Wenhua Zhang,
Hangqing Xie,
Gongxun Bai,
Shiqing Xu,
Junkuo Gao
Affiliations
Faqiang Chen
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Hui Xu
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Youlie Cai
Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
Wei Zhang
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Penglei Shen
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Wenhua Zhang
Technical Center of Hangzhou Customs, Hangzhou 310016, China
Hangqing Xie
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Gongxun Bai
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Shiqing Xu
Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, Collage of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Junkuo Gao
Institute of Functional Porous Materials, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
Hydrogen-bonded organic frameworks (HOFs), as an emerging porous material, have attracted increasing research interest in fluorescence sensing due to their inherent fluorescence emission units with unique physicochemical properties. Herein, based on the organic building block 3,3′,5,5′-tetrakis-(4-carboxyphenyl)-1,1′-biphenyl (H4TCBP), the porous material HOF-TCBP was successfully synthesized using hydrogen bond self-assembly in a DMF solution. The fluorescence properties of the HOF-TCBP solution showed that when the concentration was high, excimers were easily formed, the PL emission was red-shifted, and the fluorescence intensity became weaker. HOF-TCBP showed good sensitivity and selectivity to metal ions Fe3+, Cr3+, and anion Cr2O72−. In addition, HOF-TCBP can serve as a label-free fluorescent sensor material for the sensitive and selective detection of dopamine (DA). HOF-based DA sensing is actually easy, low-cost, simple to operate, and highly selective for many potential interfering substances, and it has been successfully applied to the detection of DA in biological samples with satisfactory recoveries (101.1–104.9%). To our knowledge, this is the first report of HOF materials for efficient detection of the neurotransmitter dopamine in biological fluids. In short, this work widely broadens the application of HOF materials as fluorescent sensors for the sensing of ions and biological disease markers.