Physics and Imaging in Radiation Oncology (Apr 2024)
Optimized raw data selection for artifact reduction of breathing controlled four-dimensional sequence scanning
Abstract
Background and purpose: Even with most breathing-controlled four-dimensional computed tomography (4DCT) algorithms image artifacts caused by single significant longer breathing still occur, resulting in negative consequences for radiotherapy. Our study presents first phantom examinations of a new optimized raw data selection and binning algorithm, aiming to improve image quality and geometric accuracy without additional dose exposure. Materials and methods: To validate the new approach, phantom measurements were performed to assess geometric accuracy (volume fidelity, root mean square error, Dice coefficient of volume overlap) for one- and three-dimensional tumor motion trajectories with and without considering motion hysteresis effects. Scans without significantly longer breathing cycles served as references. Results: Median volume deviations between optimized approach and reference of at maximum 1% were obtained considering all movements. In comparison, standard reconstruction yielded median deviations of 9%, 21% and 12% for one-dimensional, three-dimensional, and hysteresis motion, respectively. Measurements in one- and three-dimensional directions reached a median Dice coefficient of 0.970 ± 0.013 and 0.975 ± 0.012, respectively, but only 0.918 ± 0.075 for hysteresis motions averaged over all measurements for the optimized selection. However, for the standard reconstruction median Dice coefficients were 0.845 ± 0.200, 0.868 ± 0.205 and 0.915 ± 0.075 for one- and three-dimensional as well as hysteresis motions, respectively. Median root mean square errors for the optimized algorithm were 30 ± 16 HU2 and 120 ± 90 HU2 for three-dimensional and hysteresis motions, compared to 212 ± 145 HU2 and 130 ± 131 HU2 for the standard reconstruction. Conclusions: The algorithm was proven to reduce 4DCT-related artifacts due to missing projection data without further dose exposure. An improvement in radiotherapy treatment planning due to better image quality can be expected.