Sensors (Nov 2024)

LPC-SonoNet: A Lightweight Network Based on SonoNet and Light Pyramid Convolution for Fetal Ultrasound Standard Plane Detection

  • Tianxiang Yu,
  • Po-Hsiang Tsui,
  • Denis Leonov,
  • Shuicai Wu,
  • Guangyu Bin,
  • Zhuhuang Zhou

DOI
https://doi.org/10.3390/s24237510
Journal volume & issue
Vol. 24, no. 23
p. 7510

Abstract

Read online

The detection of fetal ultrasound standard planes (FUSPs) is important for the diagnosis of fetal malformation and the prevention of perinatal death. As a promising deep-learning technique in FUSP detection, SonoNet’s network parameters have a large size. In this paper, we introduced a light pyramid convolution (LPC) block into SonoNet and proposed LPC-SonoNet with reduced network parameters for FUSP detection. The LPC block used pyramid convolution architecture inspired by SimSPPF from YOLOv6 and was able to extract features from various scales with a small parameter size. Using SonoNet64 as the backbone, the proposed network removed one of the convolutional blocks in SonoNet64 and replaced the others with LPC blocks. The proposed LPC-SonoNet model was trained and tested on a publicly available dataset with 12,400 ultrasound images. The dataset with six categories was further divided into nine categories. The images were randomly divided into a training set, a validation set, and a test set in a ratio of 8:1:1. Data augmentation was conducted on the training set to address the data imbalance issue. In the classification of six categories and nine categories, LPC-SonoNet obtained the accuracy of 97.0% and 91.9% on the test set, respectively, slightly higher than the accuracy of 96.60% and 91.70% by SonoNet64. Compared with SonoNet64 with 14.9 million parameters, LPC-SonoNet had a much smaller parameter size (4.3 million). This study pioneered the deep-learning classification of nine categories of FUSPs. The proposed LPC-SonoNet may be used as a lightweight network for FUSP detection.

Keywords