Molecules (Mar 2020)

[1,5]-Hydride Shift-Cyclization <i>versus</i> C(sp<sup>2</sup>)-H Functionalization in the Knoevenagel-Cyclization Domino Reactions of 1,4- and 1,5-Benzoxazepines

  • Dóra Szalóki Vargáné,
  • László Tóth,
  • Balázs Buglyó,
  • Attila Kiss-Szikszai,
  • Attila Mándi,
  • Péter Mátyus,
  • Sándor Antus,
  • Yinghan Chen,
  • Dehai Li,
  • Lingxue Tao,
  • Haiyan Zhang,
  • Tibor Kurtán

DOI
https://doi.org/10.3390/molecules25061265
Journal volume & issue
Vol. 25, no. 6
p. 1265

Abstract

Read online

Domino cyclization reactions of N-aryl-1,4- and 1,5-benzoxazepine derivatives involving [1,5]-hydride shift or C(sp2)-H functionalization were investigated. Neuroprotective and acetylcholinesterase activities of the products were studied. Domino Knoevenagel-[1,5]-hydride shift-cyclization reaction of N-aryl-1,4-benzoxazepine derivatives with 1,3-dicarbonyl reagents having active methylene group afforded the 1,2,8,9-tetrahydro-7bH-quinolino [1,2-d][1,4]benzoxazepine scaffold with different substitution pattern. The C(sp3)-H activation step of the tertiary amine moiety occurred with complete regioselectivity and the 6-endo cyclization took place in a complete diastereoselective manner. In two cases, the enantiomers of the chiral condensed new 1,4-benzoxazepine systems were separated by chiral HPLC, HPLC-ECD spectra were recorded, and absolute configurations were determined by time-dependent density functional theory- electronic circular dichroism (TDDFT-ECD) calculations. In contrast, the analogue reaction of the regioisomeric N-aryl-1,5-benzoxazepine derivative did not follow the above mechanism but instead the Knoevenagel intermediate reacted in an SEAr reaction [C(sp2)-H functionalization] resulting in a condensed acridane derivative. The AChE inhibitory assays of the new derivatives revealed that the acridane derivative had a 6.98 μM IC50 value.

Keywords