Cells (Dec 2022)

Megalin Orchestrates FcRn Endocytosis and Trafficking

  • Eileen Dahlke,
  • Yaman Anan,
  • Lea Maximiliane Klie,
  • Ariane Elisabeth Hartkopf,
  • Franziska Theilig

DOI
https://doi.org/10.3390/cells12010053
Journal volume & issue
Vol. 12, no. 1
p. 53

Abstract

Read online

The neonatal Fc receptor (FcRn) is highly expressed in the renal proximal tubule and is important for the reclamation of albumin by cellular transcytosis to prevent its loss in the urine. The initial event of this transcellular transport mechanism is the endocytosis of albumin by the apical scavenger receptors megalin and cubilin. An interaction of megalin and FcRn was postulated, however, evidence is still missing. Similarly, the intracellular trafficking of FcRn remains unknown and shall be identified in our study. Using a Venus-based bimolecular fluorescence complementation system, we detected an interaction between megalin and FcRn in the endosomal compartment, which significantly increased with the induction of endocytosis using albumin or lactoglobulin as a ligand. The interaction between megalin and FcRn occurred at a neutral and acidic pH between the extracellular domains of both proteins. Amnionless, another transmembrane acceptor of cubilin, revealed no interaction with FcRn. With the induction of endocytosis by albumin or lactoglobulin, super resolution microscopy demonstrated a redistribution of megalin and FcRn into clathrin vesicles and early endosomes. This trafficking into clathrin vesicles was impaired in megalin-deficient cells upon albumin-induced endocytosis, supporting the role of megalin in FcRn redistribution. Our results indicate that megalin and FcRn specifically bind and interact within their extracellular domains. The availability of megalin is necessary for the redistribution of FcRn. Megalin, therefore, orchestrates FcRn endocytosis and intracellular trafficking as an early event intranscytosis.

Keywords