Biogeosciences (Feb 2020)

Light availability modulates the effects of warming in a marine N<sub>2</sub> fixer

  • X. Yi,
  • F.-X. Fu,
  • D. A. Hutchins,
  • K. Gao,
  • K. Gao

DOI
https://doi.org/10.5194/bg-17-1169-2020
Journal volume & issue
Vol. 17
pp. 1169 – 1180

Abstract

Read online

Trichodesmium species, as a group of photosynthetic N2 fixers (diazotrophs), play an important role in the marine biogeochemical cycles of nitrogen and carbon, especially in oligotrophic waters. How ongoing ocean warming may interact with light availability to affect Trichodesmium is not yet clear. We grew Trichodesmium erythraeum IMS 101 at three temperature levels of 23, 27, and 31∘C under growth-limiting and growth-saturating light levels of 50 and 160 µmol quanta m−2 s−1, respectively, for at least 10 generations and then measured physiological performance, including the specific growth rate, N2 fixation rate, and photosynthesis. Light availability significantly modulated the growth response of Trichodesmium to temperature, with the specific growth rate peaking at ∼27∘C under the light-saturating conditions, while growth of light-limited cultures was non-responsive across the tested temperatures (23, 27, and 31∘C). Short-term thermal responses for N2 fixation indicated that both high growth temperature and light intensity increased the optimum temperature (Topt) for N2 fixation and decreased its susceptibility to supra-optimal temperatures (deactivation energy – Eh). Simultaneously, all light-limited cultures with low Topt and high Eh were unable to sustain N2 fixation during short-term exposure to high temperatures (33–34∘C) that are not lethal for the cells grown under light-saturating conditions. Our results imply that Trichodesmium spp. growing under low light levels while distributed deep in the euphotic zone or under cloudy weather conditions might be less sensitive to long-term temperature changes that occur on the timescale of multiple generations but are more susceptible to abrupt (less than one generation time span) temperature changes, such as those induced by cyclones and heat waves.