Heliyon (Jun 2024)

Multivariate impedance spectroscopy method for the measuring of quality and status of electric power oils

  • HongQuan Li,
  • Yan Chen,
  • Gang Xiong

Journal volume & issue
Vol. 10, no. 12
p. e32846

Abstract

Read online

With the rapid development of power technology and the complexity of power system equipment, efficient and accurate assessment of the quality and condition of electric power equipment oil (EPEO) has become particularly critical. EPEO is an important factor to ensure the stable operation of power equipment, and its quality and state directly affect the safety and reliability of equipment. However, there are many challenges with traditional oil measuring techniques, which often rely on destructive testing, which not only increases maintenance costs, but can also cause damage to the equipment itself. In the face of these limitations, there is an urgent need to study new oil detection technologies and methods to meet the high standards of modern power systems for high efficiency, non-destructive and comprehensive analytical capabilities. In this paper, a new EPEO measuring technique based on multivariable impedance spectroscopy (MIS) is proposed. Through in-depth analysis of oil's impedance response characteristics under electric field excitation with different frequency., a new approach is provided for the comprehensive evaluation of oil's performance. MIS technology not only has the characteristics of non-destructive testing, ensuring the non-destructive measuring of EPEO, but also its rapid response and real-time analysis ability significantly improves the monitoring efficiency. Based on the proposed MIS detection method, a detection system and experimental prototype which can detect and evaluate the performance and quality of power oil more accurately are designed. Compared with the traditional measuring device, the measuring device utilized in this method can employ three variables. Specifically, it covers a frequency range for the detectable excitation signal spanning from 1 to 100 kHz, an amplitude range from 0.1 to 11.7 V, and a temperature range from −100 °C to 100 °C. The MIS detection method has the capability to identify a variety of parameters, including the dielectric constant, volume resistivity, and dielectric loss factor, among others. This method encompasses a broader spectrum of parameters compared to traditional detection methods, which typically focus on one or two detectable indicators. The correctness and feasibility of the proposed multivariable impedance spectrum detection technique are verified, which provides a new way for the comprehensive evaluation of oil's performance.

Keywords