Results in Physics (May 2023)
Pure-cubic optical solitons to the Schrödinger equation with three forms of nonlinearities by Sardar subequation method
Abstract
In this work, it is used three families of nonlinearities such as Kerr law, Power Law and Parabolic law over the High-order dispersive Nonlinear Schrödinger equation to inquire optical soliton solutions and diverse solutions by employing the Sardar Sub-equation method. Considering the constraint relation on some parameters of the NLSE, it is obtained bright and dark optical soliton solutions. However, under a certain condition on the method parameters, it is exposed singular soliton and trigonometric function solutions. More precisely, for ρ=a24b, a new form of the complex solutions are obtained. The obtained results are depicted in 2D and 3D to show out the peakon soliton in Figure 2 compared to Yıldırım et al. (2020); Zayed et al. (2020) and Rezazadeh et al. (2020). These results could probably give a new way for designing optical fibers devices to update the communication flux.