Applied Sciences (Mar 2025)

MSS-YOLO: Multi-Scale Edge-Enhanced Lightweight Network for Personnel Detection and Location in Coal Mines

  • Wenjuan Yang,
  • Yanqun Wang,
  • Xuhui Zhang,
  • Le Zhu,
  • Tenghui Wang,
  • Yunkai Chi,
  • Jie Jiang

DOI
https://doi.org/10.3390/app15063238
Journal volume & issue
Vol. 15, no. 6
p. 3238

Abstract

Read online

As a critical task in underground coal mining, personnel identification and positioning in fully mechanized mining faces are essential for safety. Yet, complex environmental factors—such as narrow tunnels, heavy dust, and uneven lighting—pose significant challenges to accurate detection. In this paper, we propose a personnel detection network, MSS-YOLO, for fully mechanized mining faces based on YOLOv8. By designing a Multi-Scale Edge Enhancement (MSEE) module and fusing it with the C2f module, the performance of the network for personnel feature extraction under high-dust or long-distance conditions is effectively enhanced. Meanwhile, by designing a Spatial Pyramid Shared Conv (SPSC) module, the redundancy of the model is reduced, which effectively compensates for the problem of the max pooling being prone to losing the characteristics of the personnel at long distances. Finally, the lightweight Shared Convolutional Detection Head (SCDH) ensures real-time detection under limited computational resources. The experimental results show that compared to Faster-RCNN, SSD, YOLOv5s6, YOLOv7-tiny, YOLOv8n, and YOLOv11n, MSS-YOLO achieves AP50 improvements of 4.464%, 10.484%, 3.751%, 4.433%, 3.655%, and 2.188%, respectively, while reducing the inference time by 50.4 ms, 11.9 ms, 3.7 ms, 2.0 ms, 1.2 ms, and 2.3 ms. In addition, MSS-YOLO is combined with the SGBM binocular stereo vision matching algorithm to provide a personnel 3D spatial position solution by using disparity results. The personnel location results show that in the measurement range of 10 m, the position errors in the x-, y-, and z-directions are within 0.170 m, 0.160 m, and 0.200 m, respectively, which proves that MSS-YOLO is able to accurately detect underground personnel in real time and can meet the underground personnel detection and localization requirements. The current limitations lie in the reliance on a calibrated binocular camera and the performance degradation beyond 15 m. Future work will focus on multi-sensor fusion and adaptive distance scaling to enhance practical deployment.

Keywords