Results in Physics (Nov 2024)
Study the electronic, optical, and thermoelectric characteristics of cubic perovskite BXO3 (X = P, As, Sb, Bi): DFT calculations
Abstract
The structural, electronics, optical, and thermoelectric characteristics of BXO3(X = P, As, Sb, and Bi) perovskites are investigated within the density functional theory (DFT) framework. The full potential linearized augmented plane wave method employs various exchange–correlation potential approximations to estimate the ground state’s physical properties. The ground state stability of BXO3 perovskites was examined and all compounds have shown their cubic structure stability. The computed ground state structural parameters in the stability phase agree well with the available literature. Our results of optical properties indicated the potential use of BXO3(X = P, As, Sb, and Bi) in visible and ultraviolet zones of optoelectronic devices. The studied perovskites have indirect bandgap energy except BSbO3 has a direct bandgap. Notably, our findings show that except for BPO3 the figure of merit (ZT) values approach unity within the temperature range of 100–800 K for BSbO3 and BBiO3. In contrast, for BAsO3 the value decreases rapidly from one after 300 K. These perovskites are prospective candidates for thermoelectric applications.