Fractal and Fractional (Sep 2022)

Modelling the Frequency of Interarrival Times and Rainfall Depths with the Poisson Hurwitz-Lerch Zeta Distribution

  • Carmelo Agnese,
  • Giorgio Baiamonte,
  • Elvira Di Nardo,
  • Stefano Ferraris,
  • Tommaso Martini

DOI
https://doi.org/10.3390/fractalfract6090509
Journal volume & issue
Vol. 6, no. 9
p. 509

Abstract

Read online

The Poisson-stopped sum of the Hurwitz–Lerch zeta distribution is proposed as a model for interarrival times and rainfall depths. Theoretical properties and characterizations are investigated in comparison with other two models implemented to perform the same task: the Hurwitz–Lerch zeta distribution and the one inflated Hurwitz–Lerch zeta distribution. Within this framework, the capability of these three distributions to fit the main statistical features of rainfall time series was tested on a dataset never previously considered in the literature and chosen in order to represent very different climates from the rainfall characteristics point of view. The results address the Hurwitz–Lerch zeta distribution as a natural framework in rainfall modelling using the additional random convolution induced by the Poisson-stopped model as a further refinement. Indeed the Poisson contribution allows more flexibility and depiction in reproducing statistical features, even in the presence of very different climates.

Keywords