PLoS ONE (Jan 2020)
Noise induced unanimity and disorder in opinion formation.
Abstract
We propose an opinion dynamics model based on Latané's social impact theory. Actors in this model are heterogeneous and, in addition to opinions, are characterised by their varying levels of persuasion and support. The model is tested for two and three initial opinions randomly distributed among actors. We examine how the noise (randomness of behaviour) and the flow of information among actors affect the formation and spread of opinions. Our main research involves the process of opinion formation and finding phases of the system in terms of parameters describing noise and flow of the information for two and three opinions available in the system. The results show that opinion formation and spread are influenced by both (i) flow of information among actors (effective range of interactions among actors) and (ii) noise (randomness in adopting opinions). The noise not only leads to opinions disorder but also it promotes consensus under certain conditions. In disordered phase and when the exchange of information is spatially effectively limited, various faces of disorder are observed, including system states, where the signatures of self-organised criticality manifest themselves as scale-free probability distribution function of cluster sizes. Then increase of noise level leads system to disordered random state. The critical noise level above which histograms of opinion clusters' sizes loose their scale-free character increases with increase of the easy of information flow.