Sensors (Jun 2025)
Evaluation of Optical and Thermal Properties of NIR-Blocking Ophthalmic Lenses Under Controlled Conditions
Abstract
This study evaluates the optical and thermal performance of near-infrared (NIR)-blocking spectacle lenses at luminous transmittance grades of 0, 2, and 3. Ten lens types were tested, including clear, tinted, and NIR-blocking spectacle lenses (NIBSL). The NIR blocking rate was measured across 780–1100 nm and 1100–1400 nm wavelength bands. Color reproduction was assessed using sharpness (MTF 50), point spread function (PSF), and color accuracy (ΔE00) under 1000 lux outdoor illumination. Thermal insulation was analyzed by monitoring porcine skin temperature at 36 °C and 60 °C under each lens type. As a result, the NIBSL showed better near-infrared blocking performance than other types of lenses in both wavelength ranges, and the coated NIBSL blocked near-infrared more effectively than the polymerized lenses. Compared with other types of lenses, NIBSL showed no difference in object identification, color recognition, and reproducibility, so there is no problem in using them together. Strong correlations were observed between lens surface temperature and underlying pig skin temperature, and inverse correlations between NIR blocking rate and pig skin temperature gradient. These findings confirm that NIBSL offer enhanced protection against NIR-induced thermal effects without compromising optical performance, supporting their use in daily environments for ocular and skin safety.
Keywords