Frontiers in Immunology (Jul 2021)

ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control – a Complex Early Trait (‘CoV-MAC-TED’) for Combating SARS-CoV-2-Induced Cell Reprogramming

  • José Hélio Costa,
  • José Hélio Costa,
  • Gunasekaran Mohanapriya,
  • Gunasekaran Mohanapriya,
  • Revuru Bharadwaj,
  • Revuru Bharadwaj,
  • Carlos Noceda,
  • Carlos Noceda,
  • Karine Leitão Lima Thiers,
  • Karine Leitão Lima Thiers,
  • Shahid Aziz,
  • Shahid Aziz,
  • Shivani Srivastava,
  • Shivani Srivastava,
  • Manuela Oliveira,
  • Manuela Oliveira,
  • Kapuganti Jagadis Gupta,
  • Kapuganti Jagadis Gupta,
  • Aprajita Kumari,
  • Aprajita Kumari,
  • Debabrata Sircar,
  • Debabrata Sircar,
  • Sarma Rajeev Kumar,
  • Sarma Rajeev Kumar,
  • Arvind Achra,
  • Arvind Achra,
  • Ramalingam Sathishkumar,
  • Ramalingam Sathishkumar,
  • Alok Adholeya,
  • Alok Adholeya,
  • Birgit Arnholdt-Schmitt,
  • Birgit Arnholdt-Schmitt

DOI
https://doi.org/10.3389/fimmu.2021.673692
Journal volume & issue
Vol. 12

Abstract

Read online

In a perspective entitled ‘From plant survival under severe stress to anti-viral human defense’ we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named ‘ReprogVirus’ was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the ‘ReprogVirus platform’ was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to ‘RegroVirus’ complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called ‘CoV-MAC-TED’. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target ‘CoV-MAC-TED’ in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that ‘de-stressing’ disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.

Keywords