Nanophotonics (Jun 2020)

Optical spin-dependent beam separation in cyclic group symmetric metasurface

  • Lee Yeon Ui,
  • Ozerov Igor,
  • Bedu Frédéric,
  • Kim Ji Su,
  • Fages Frédéric,
  • Wu Jeong Weon

DOI
https://doi.org/10.1515/nanoph-2020-0160
Journal volume & issue
Vol. 9, no. 10
pp. 3459 – 3471

Abstract

Read online

Cross-polarization scattering of a circularly polarized beam from nano-rod introduces a geometric phase to the outgoing beam with opposite circular polarization. By manipulating the spatial array of subwavelength nano-structure constituting metasurface, the geometric phase can be engineered to generate a variety of beam profiles, including vortex beam carrying orbital angular momentum via a process called spin-to-orbital angular momentum conversion. Here we introduce a cyclic group symmetric metasurface composed of tapered arc nano-rods and explore how azimuthal angular distribution of total phase determines the feature of spin-dependent beam separation. When scattered from a circular array of tapered arc nano-rods possessing varying width with a fixed length, a dynamical phase having non-constant azimuthal gradient is introduced to an incoming Gaussian beam. This leads to a spin-dependent beam separation in the outgoing vortex beam profile, which is attributed to an azimuthal angle dependent destructive interference between scatterings from two plasmonic excitations along the width and the length of tapered arc nano-rod. Relation of cyclic group symmetry property of metasurface and the generated vortex beam profile is examined in detail by experimental measurement and analysis in terms of partial-wave expansion and non-constant azimuthal gradient of total phase. Capability of spatial beam profiling by spin-dependent beam separation in vortex beam generation has an important implication for spatial demultiplexing in optical communication utilizing optical angular momentum mode division multiplexing as well as for optical vortex tweezers and optical signal processing employing vortex beams.

Keywords