Journal of Cardiovascular Magnetic Resonance (Nov 2022)
Automatic segmentation of the great arteries for computational hemodynamic assessment
Abstract
Abstract Background Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segmentation is time-consuming and requires expert input. This study aims to develop and validate a machine learning (ML) method for segmentation of the aorta and pulmonary arteries for CFD studies. Methods 90 CHD patients were retrospectively selected for this study. 3D CMR images were manually segmented to obtain ground-truth (GT) background, aorta and pulmonary artery labels. These were used to train and optimize a U-Net model, using a 70-10-10 train-validation-test split. Segmentation performance was primarily evaluated using Dice score. CFD simulations were set up from GT and ML segmentations using a semi-automatic meshing and simulation pipeline. Mean pressure and velocity fields across 99 planes along the vessel centrelines were extracted, and a mean average percentage error (MAPE) was calculated for each vessel pair (ML vs GT). A second observer (SO) segmented the test dataset for assessment of inter-observer variability. Friedman tests were used to compare ML vs GT, SO vs GT and ML vs SO metrics, and pressure/velocity field errors. Results The network’s Dice score (ML vs GT) was 0.945 (interquartile range: 0.929–0.955) for the aorta and 0.885 (0.851–0.899) for the pulmonary arteries. Differences with the inter-observer Dice score (SO vs GT) and ML vs SO Dice scores were not statistically significant for either aorta or pulmonary arteries (p = 0.741, p = 0.061). The ML vs GT MAPEs for pressure and velocity in the aorta were 10.1% (8.5–15.7%) and 4.1% (3.1–6.9%), respectively, and for the pulmonary arteries 14.6% (11.5–23.2%) and 6.3% (4.3–7.9%), respectively. Inter-observer (SO vs GT) and ML vs SO pressure and velocity MAPEs were of a similar magnitude to ML vs GT (p > 0.2). Conclusions ML can successfully segment the great vessels for CFD, with errors similar to inter-observer variability. This fast, automatic method reduces the time and effort needed for CFD analysis, making it more attractive for routine clinical use.
Keywords