Breast (Oct 2024)
Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data
Abstract
Purpose: In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients. Materials and methods: A retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrast-enhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation. Results: Of the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based “Data Amalgamation” model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954–1.000), surpassing other models. Conclusion: Our study illuminates the challenges and opportunities inherent in breast cancer management post-NAT. By introducing a sophisticated, SVM-based “Data Amalgamation” model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.