European Physical Journal C: Particles and Fields (Dec 2021)

Identification of the cosmogenic $$^{11}$$ 11 C background in large volumes of liquid scintillators with Borexino

  • M. Agostini,
  • K. Altenmüller,
  • S. Appel,
  • V. Atroshchenko,
  • Z. Bagdasarian,
  • D. Basilico,
  • G. Bellini,
  • J. Benziger,
  • R. Biondi,
  • D. Bravo,
  • B. Caccianiga,
  • F. Calaprice,
  • A. Caminata,
  • P. Cavalcante,
  • A. Chepurnov,
  • D. D’Angelo,
  • S. Davini,
  • A. Derbin,
  • A. Di ZGiacintio,
  • V. Di Marcello,
  • X. F. Ding,
  • A. Di Ludovico,
  • L. Di Noto,
  • I. Drachnev,
  • A. Formozov,
  • D. Franco,
  • C. Galbiati,
  • C. Ghiano,
  • M. Giammarchi,
  • A. Goretti,
  • A. S. Göttel,
  • M. Gromov,
  • D. Guffanti,
  • Aldo Ianni,
  • Andrea Ianni,
  • A. Jany,
  • D. Jeschke,
  • V. Kobychev,
  • G. Korga,
  • S. Kumaran,
  • M. Laubenstein,
  • E. Litvinovich,
  • P. Lombardi,
  • I. Lomskaya,
  • L. Ludhova,
  • G. Lukyanchenko,
  • L. Lukyanchenko,
  • I. Machulin,
  • J. Martyn,
  • E. Meroni,
  • M. Meyer,
  • L. Miramonti,
  • M. Misiaszek,
  • V. Muratova,
  • B. Neumair,
  • M. Nieslony,
  • R. Nugmanov,
  • L. Oberauer,
  • V. Orekhov,
  • F. Ortica,
  • M. Pallavicini,
  • L. Papp,
  • L. Pelicci,
  • Ö. Penek,
  • L. Pietrofaccia,
  • N. Pilipenko,
  • A. Pocar,
  • A. Porcelli,
  • G. Raikov,
  • M. T. Ranalli,
  • G. Ranucci,
  • A. Razeto,
  • A. Re,
  • M. Redchuk,
  • A. Romani,
  • N. Rossi,
  • S. Schönert,
  • D. Semenov,
  • G. Settanta,
  • M. Skorokhvatov,
  • A. Singhal,
  • O. Smirnov,
  • A. Sotnikov,
  • Y. Suvorov,
  • R. Tartaglia,
  • G. Testera,
  • J. Thurn,
  • E. Unzhakov,
  • A. Vishneva,
  • R. B. Vogelaar,
  • F. von Feilitzsch,
  • M. Wojcik,
  • M. Wurm,
  • S. Zavatarelli,
  • K. Zuber,
  • G. Zuzel

DOI
https://doi.org/10.1140/epjc/s10052-021-09799-x
Journal volume & issue
Vol. 81, no. 12
pp. 1 – 15

Abstract

Read online

Abstract Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $$^{11}$$ 11 C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $$^{11}$$ 11 C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a $$^{11}$$ 11 C tagging efficiency of $$\sim 90$$ ∼ 90 % and $$\sim $$ ∼ 63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $$^{11}$$ 11 C produced in high-multiplicity during major spallation events. Such $$^{11}$$ 11 C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $$\sim 90\%$$ ∼ 90 % but with a higher fraction of the exposure surviving, in the range of $$\sim $$ ∼ 66–68 %.