Communications Biology (Sep 2024)
A shared spatial topography links the functional connectome correlates of cocaine use disorder and dopamine D2/3 receptor densities
Abstract
Abstract The biological mechanisms that contribute to cocaine and other substance use disorders involve an array of cortical and subcortical systems. Prior work on the development and maintenance of substance use has largely focused on cortico-striatal circuits, with relatively less attention on alterations within and across large-scale functional brain networks, and associated aspects of the dopamine system. Here, we characterize patterns of functional connectivity in cocaine use disorder and their spatial association with neurotransmitter receptor densities and transporter bindings assessed through PET. Profiles of functional connectivity in cocaine use disorder reliably linked with spatial densities of dopamine D2/3 receptors across independent datasets. These findings demonstrate that the topography of dopamine receptor densities may underlie patterns of functional connectivity in cocaine use disorder, as assessed through fMRI.